

NORTH CAROLINA Department of Transportation

NCDOT Research & Implementation Program / Grant Writing Neil Mastin, PE – R&D Manager

Spring 2019

What do we do?

Program Goals

Improve NCDOT Planning, Engineering and Business Practices Support NCDOT Operations and Maintenance Activities

Conduct research that can be <u>implemented</u> Develop relationships between Academia & NCDOT

Annual Program FAQ

Who typically submits Research Needs?

> Anyone at NCDOT, with manager approval

University researchers in coordination with DOT business units

Outside groups in coordination with NCDOT Subject Matter Experts Internal, multistep committee process that includes review

How are projects

selected?

input by idea submitters How long does it take for an Idea to become a project?

> 1 year from close of solicitation period

Contingency funds for off cycle needs.

When using alternative funds, can be less than 1 month How long do Research Projects Last?

Varies

2 years is typical

Can be as short as 6 months or as long as 3 years

Project Selection / Oversight

Research and Development Unit Oversees Overall Program

Coordinates all Activities Structures Construction and Geotech Pavement, Materials, Maintenance Planning, Policy and Multi-Modal Design, Traffic, Mobility and Safety

Executives

Senior

Management

Annual Research Program is not the only opportunity

Remain on the lookout for other opportunities during the year!

- Business units may have other, off-cycle needs
- Those opportunities will be advertised as well

Other research opportunities are as follows

- Technical Assistance Program
- Technology Transfer Program
- Other state funded opportunities

Implementation / Technology Transfer (T²) (~\$250k of SP&R funds per year)

- RP 2019-44: Spatial and Temporal Distribution of Major Beltway Project Impacts.
- RP 2019-50: Ped. Incident Detection using Artificial Intelligence.
- RP 2019-46: NCDOT Research & Innovation Summit

What Makes a Good Research Idea / Proposal?

Work with NCDOT Subject Matter Experts (SME) to clearly articulate idea and understand need

Lines up with ongoing initiatives and fits DOTs current mission and goals

Clearly articulated methodology: Needs to be useable for NCDOT

Tangible / Useable deliverables (Implementation)

Executive: Bobby Lewis

Executive: Jim Trogdon

Executives: David Howard,

Bobby Lewis

Executive: Bobby Lewis

NCDOT Priorities and Work Groups

10/16/17

Executive: Jim Trogdon

Executives: David Howard,

Beau Memory

Executives: David Howard,

Anne Laslev

Executive: Greer Beaty

How to be engaged

Reach out to NCDOT Research & Development Unit

- Send Resume / CV
- Send one pager outlining research interests
- NCDOT R&D Unit will connect you with appropriate Subject Matter Experts (SME's)

Contact w/ Subject Matter Experts

- Meet w/ SME to discuss personal research and SME research needs
- START EARLY: This should happen prior to, or early in, the Research Idea solicitation period
- It would be good to show completed research to identify how your research is related to the need of SME (Note: It is also good to identify the gaps).

Developing Research Ideas / Proposals

Communicate with SME • Meet / call multiple times to focus research idea. Research Ideas (RI) • Make sure to connect the results w/ need and deliverable for SME. • Note: University RI's are treated as proprietary. • Reach out to RI Author (NCDOT R&D Unit can assist with this process) to gain a good understanding of their needs Proposals • It is critical to clearly articulate the following: How does the proposal address the problem? Are the deliverables what the SME needs? How can the SME implement the Research Product? • This process is like the proposal process. It is very important to communicate with SME's. **Off-Cycle Projects** • Time is typically limited for the SME's (Efficiency and clarity are very important).

Research Program Annual Timeline

We accept research ideas year-round!

Annual due date is typically in July

R&D can help develop and refine Research Ideas (or find someone that can) <u>Research Idea Guidelines</u> Research Idea Online Form (being upgraded)

https://connect.ncdot.gov/projects/research/Pages/RNS-Form.aspx

Contact Info

Neil Mastin	Research Manager	919-707-6661	jmastin@ncdot.gov
Steve Bolyard	Mobility, Safety, Roadway Design, etc.	919-707-6663	sjbolyard@ncdot.gov
John Kirby	Stormwater, Environment, Planning	919-707-6662	jkirby@ncdot.gov
Mustan Kadibhai	Pavement, Materials, Maintenance, Structures, Construction, Geotech	919-707-6667	<u>mkadibhai@ncdot.gov</u>
Curtis Bradley	Implementation Manager, Planning, Policy, Multi-modal	919-707-6664	<u>cbradley8@ncdot.gov</u>
Lamara Williams-Jones	Research Librarian	919-707-6665	lcwilliams2@ncdot.gov
General Contact		919-707-6660	research@ncdot.gov

Research Connect Page (for Forms, completed and active projects and more): https://connect.ncdot.gov/projects/research/Pages/default.aspx

Research Directory Page:

https://apps.ncdot.gov/dot/directory/authenticated/UnitPage.aspx?id=8781

Thank You

Capturing and Communicating the Value of NCDOT Research

Thomas Nicholas, PhD, PE

Agenda

- 1. Applied research process
- 2. Project success
- 3. CBA to define value
- 4. Future work

Applied Research Process

• Can the research process help ensure "value" is obtained for stakeholders?

- What opportunities exist in research process where success be impacted positively?
 - At the beginning of the project, implementation was the prime candidate.

The Applied Research Process

• The applied research process (cradle to grave), is often described as identification, investigation, formulation, reporting and implementation.

Applied Research Process, (Hartman, et al., 2001)

Continuous Improvement

• Continuous Improvement is a methodology that allows us to take a break, assess, correct and move forward in a direction that adds value and improves chances of a successful project.

Improving the Applied Research Process

• The new Applied Research Model:

- Probability of Success is impacted primarily at the proposal selection stage:
 - Research Champion, PI-Exp, and Project Need
 - Problem statement/scope of work
 - Determining value and definition of success for each project at the needs assessment stage.
 - This is an area for future investigation.

- Communication is still key to insure final research products meet the needs of the NCDOT.
- During the project, opportunity to improve research projects should be provided.
- Historically, this is occurring informally in highly successful projects, it is recommended that the process be formalized to insure ALL projects are meeting the level of communication required for success.

UNC CHARLO

- Executives, Politicians, Public Money is the communication medium for Value
 - Realized through implementing research results and products.
 - Implementation plan needs to be a unified effort between the researcher and the StIC.

- CBA is performed once implementation of the research products has concluded.
- Evaluation of project in terms of performance and identification of improvements for the next research cycle.
- Communication of Results

Probability of Project Success

- What is success and how can we impact it at the proposal stage?
 - First, we have to define project success and then what drives it.

UNC CHARLOT

Definition of a successful Research Project	
Knowledge Gained	77.14%
Detailed Implementation Plan	17.14%
Quality Final Report	5.71%

Note: We will revisit Knowledge Gained later in the presentation

Project Performance

• Success Indicators – Interview Identified

1	Active NCDOT Research Champion
2	Active StIC Participation
3	Detailed Implementation Plan
4	Graduate Student Participation
5	NCDOT Management Support
6	Performing Organization/University
7	Proposal Quality
8	Regular Communication from the PI
9	Research Need Priority
10	Researcher Experience with NCDOT
11	Resulting Publications
12	Routine Engagement with Research Team

Survey – Final Hierarchal Ranking of Performance Indicators

HIERARCHAL	RESEARCH SUCCESS	
RANK	INDICATORS	
1	Regular Communication from the PI	
2	Researcher Experience with NCDOT	
3	NCDOT Research Project Champion	
4	Research Need	
5	Proposal Quality	

Cost Benefit Analysis

If monetary benefit is to be used as a communication focus, a methodology must be developed to calculate both hard costs (quantitative) and soft (qualitative) costs to capture the true value of the research project.

Cost Benefit Analysis

• CBA for research projects:

$$B / C = \frac{K \times (HB + SB)}{RC + IC}$$

- B/C = the benefit-cost ratio for a research and implementation effort
- K = Impact Constant (K = 1 + IF)
- HB = "Hard" Benefits based on per year calculation
- SB = "Soft" Benefits based on per year calculation
- RC = the cost of the research project
- IC = the cost of implementing the results

Impact Constant, K

Based on survey feedback from NCDOT research stakeholders the following qualitative benefits were identified as beneficial and deemed qualitative impact factors, *IF*:

- Level of Knowledge Gained development of standards, policies, specifications, changes to operations, etc., K_i
- Implementation of Research Products, IR_i
- Experience Gained between the NCDOT and Researcher (PI), E_i
- Student Participation and Exposure, GS_i
- Positive Visibility of NCDOT, V_i
- Publications, Peer Reviewed (conferences, journals), PC_i

Impact Constant, K

• K is calculated as:

$$(K = 1 + IF)$$

Where:

$$IF = w_{K}(K_{i}) + w_{IR}(IR_{i}) + w_{E}(E_{i}) + w_{GS}(GS_{i}) + w_{V}(V_{i}) + w_{PC}(PC_{i}) \le 1$$

Note: w_i is the weight factor for each qualitative impact factor.

Development of Weight Factors, w_i

- Analytic Hierarchy Process (AHP) was used to develop weighting factors, w_i
- AHP requires the input (survey data) must elicit the respondent to compare variables. This requires that the pair wise comparisons have increasing and decreasing degrees of importance past the midpoint (average) assessment.
 - Strongly Disagree1Disagree2Undecided3Agree4Strongly Agree5

Impact Factor Equation

- The Impact Factor equation can then be written as follows: $IF = 0.19(K_i) + 0.18(IR_i) + 0.17(E_i) + 0.15(GS_i) + 0.16(V_i) + 0.15(PC_i) \le 1$
- Individual Impact Factor Values

None	Low Impact	Impacted	High Impact
0	0.33	0.67	1

- Cost Benefit Example: RP 2015-11. Preventive Maintenance Program
- Good example that contains both hard and soft benefits.

• Research Budget: \$243,000

• Current Cost of Oil Changes

For Regular Interval						
Threshold		Oil Changes	hanges Annual Cost			
value	units	per Machine	per vehicle		Annual Cost	
5,000	miles	2	\$	700.00	\$	114,800.00
5,000	miles	6	\$	900.00	\$	19,800.00
5,000	miles	6	\$	840.00	\$	46,200.00
200	hours	1	\$	270.00	\$	17,280.00
200	hours	2	\$	400.00	\$	21,600.00
200	hours	2	\$	560.00	\$	24,080.00
200	hours	3	\$	750.00	\$	15,000.00
200	hours	2	\$	420.00	\$	23,100.00
Cost				\$	281,860.00	
Benefits					0	
Benefit / Cost Ratio					0	

• Costs of Oil Changes based on Project

from Extended Oil Drain Intervals						
Threshold		Oil Changes	Annual Cost			
value	units	per Machine	р	er vehicle	A	nnual Cost
10,000	miles	1	\$	350.00	\$	57,400.00
5,000	miles	6	\$	900.00	\$	19,800.00
10,000	miles	3	\$	420.00	\$	23,100.00
500	hours	1	\$	270.00	\$	17,280.00
500	hours	1	\$	200.00	\$	10,800.00
500	hours	1	\$	280.00	\$	12,040.00
500	hours	1	\$	250.00	\$	5,000.00
500	hours	1	\$	210.00	\$	11,550.00
				Cost	\$	156,970.00

• Estimated Savings per Year

Estimated savings						
Oil Changes per Machine	Annual Cost		Oil (Gallon)			
1	\$	57,400.00	1230			
0	\$	-	0			
3	\$	23,100.00	537			
0	\$	-	0			
1	\$	10,800.00	216			
1	\$	12,040.00	258			
2	\$	10,000.00	210			
1	\$	11,550.00	220			
	\$	124,890.00	2671			

• Calculating the *IF* as:

Knowledge	= 1.0 (new knowledge)
Implementation	= 0.33 (has not been fully implemented)
Experience	= 0
Grad Students	= 0.67 (2 MS students funded)
Publications	= 0.67 (3 presentations and a TRB paper)
Visibility	= 0.33 (Small communication about the project)

IF = 0.19(1) + 0.18(0.33) + 0.17(0) + 0.15(0.67) + 0.15(0.67) + 0.16(0.33) = 0.50

• And the CBA can be calculated as follows:

$$B / C = \frac{K \times (HB + SB)}{RC + IC}$$

$$=\frac{1.50 \times (124,890 + 1,823)}{121,500} = 1.56$$

• In this instance, the yearly savings would be better communicated as the project is saving North Carolina taxpayers \$187,500/year based on the current implementation level.

Future Work – Knowledge Gained

- Knowledge Gained defined as a product measurable, quantifiable result of research.
 - standards,
 - policies,
 - specifications,
 - changes to operations,
 - Safety procedures

Capturing and Communicating the Value of NCDOT Research

Thomas Nicholas II, P.E., Ph.D.

tnichola@uncc.edu

Protecting Bridge Maintenance Workers:

Evaluating Fall Protection Supplementary Devices using Virtual Prototyping and Wearable Technology

Alex Albert, Ph.D. Assistant Professor

Carlos Zuluaga, Ph.D. Project Engineer – Harkins Builders, MD

NC STATE UNIVERSITY

Department of Civil, Construction, and Environmental Engineering

Introduction

The proportion of fall-related injuries is unacceptable

The proportion of fall-related injuries is unacceptable

The majority of bridge guardrails do not offer sufficient fall protection to workers

The majority of bridge guardrails do not offer sufficient fall protection to workers

800+ bridge structures inspected by worker-crews per day

The majority of bridge guardrails do not offer sufficient fall protection to workers

Guardrail designs approved for use in the National Highway System

The majority of bridge guardrails do not offer sufficient fall protection to workers

Fall Protection Supplementary Devices (FPSD) are an effective solution

Research Objectives

Objective 1Propose a safe, economic, and efficient method for the completion of compatibilitytesting between FPSDs and bridge guardrails using virtual prototyping techniques.

Objective 2 Conduct field-level studies to objectively compare and evaluate FPSDs adopted by bridge workers using physiological, postural, productivity, and utility measures.

Identification of Non-Compliant Bridge Guardrails

Secondary Source THE VOICE OF TRANSPOR U.S. Department of Transportation Federal Highway Administration ISON OF HIGHWAYS Structure Safety Report Routine Element Inspection COUNTY: BLADEN URE NUMBER: 080032 FREQUENCY 24 MONTHS FACILITY CARRIED SR1700 CONTRACTOR OF AN IN ACT SPATIA THE ACCOUNTS AND ADDRESS LONGITUDE: 78" 35" 30.81" 347 347 43 43 PRESTRESSED CONCRETE CHANNELS, STD.BMD-13 SUBSTRUCTURE: E.BTS&BTS.PRESTR.CONC.CAPS ON TIM.PILES/85%CTS NS: 1@30%,1@30*,1@30* SCOUR PLAN OF ACTION FRACTURE CRITICAL TEMPORARY SHORING SCOUR CRITICAL PRESENT CONDITION: Fair INSPECTION DATE: 06/02/2015 POSTED SV: 22 POSTED TTST: 25 HER SIGNS PRESENT: 3 DELINEATO LOOKING NORTH (MERCER MILL / BROWN MARSH ROAD **IGNATURE** ASSISTED BY R.D. Heath Ray L. Kaner

Identification of Non-Compliant Bridge Guardrails

70 Guardrail Designs

34 guardrails than

lower 39 inches

Ranking according to the quantity

12 Most Common Low-height Guardrails

82%

Proportion of guardrails in NC

> 22,000 guardrails

Identification of Non-Compliant Bridge Guardrails

5 most common bridge guardrails in NC

Identification of FPSDs

Slab Clamp

Freestanding guardrails

Barrier Supplements

Identification of FPSDs

23 candidate FPSD were identified

Construction of Virtual Prototypes

Construction of Virtual Prototypes

Photographs

Virtual Prototypes

Identification of Desirable Characteristics and Relevant Selection Criteria

	Want Factors	Criteria	P
1.	Ease of transportation and installation.	Easier is better. Scale 1 – 10 with 1 being the easiest.	
2.	Exposure to the unprotected edge.	Lesser is better. Scale 1 – 10 with 1 not extending beyond the barrier.	
3.	Protrusion into the work area.	Lesser is better. Measured in inches.	e de
4.	Self-weight of the FPSD.	Lesser is better. Measured in pounds.	
5.	# of components and movable parts required for complete installation.	Lesser is better. Count.	Cubrotecte Granil Granil

Objective

Evaluate and objectively compare FPSDs in terms of the advantages they provide to the safety, efficiency, and productivity of the workforce.

Objective

Evaluate and objectively compare FPSDs in terms of the advantages they provide to the safety, efficiency, and productivity of the workforce.

Physiological Demands Postural Demands

Activity Rates

Data Collection Methods

Data Collection Methods

Data Collection Methods

Average Compound Angle

Compound Angle $(\gamma)^{\circ} = |\alpha^{\circ}| + |\beta^{\circ}|$

Data Collection Methods

Average Activity Rate =

= Total activity duration # of FPSD posts used

Repeated Measures Experimental Design

Repeated Measures Experimental Design

Repeated Measures Experimental Design

Experimental Procedures

Part 1

Storage, Preparation, and Transportation Activities

Part 2

Installation and Dismantling Activities

Truck Loading

Truck Loading

Truck Unloading

Experimental Procedures – Part 2 Installation and Dismantling Activities

Work Zone Safety — Data Collection

Experimental Procedures – Part 2 Installation and Dismantling Activities

Experimental Procedures – Part 2 Installation and Dismantling Activities

Installation

Experimental Procedures – Part 2 Installation and Dismantling Activities

Dismantle

Results – Physiological Demands

Differential Heart Rate

CC120 has significantly lower differential HR compared to the RaptorRail

Results – Postural Demands

Average Compound Angle

CC120 & MCC130 have significantly lower mean compound angles compared to the RaptorRail & ParaClamp

Results – Activity Rates

Average Activity Rates

CC120 has significantly lower duration of activities compared to the RaptorRail

Results – Utility Analysis

Friedman's ANOVA

RaptorRail has significantly lower ranking compared to the other FPSDs

Summary of Results

	Diff. Heart Rate	Torso Posture	Activity Rates
CC120	Most Desirable	Most Desirable	Most Desirable
MCC130	Desirable	Most Desirable	Desirable
ParaClamp	Desirable	Least Desirable	Desirable
RaptorRail	Least Desirable	Least Desirable	Least Desirable

- 1. CC120 is preferable: Lesser physical exertion, better posture, lesser duration, and better utility.
- 1. MCC130: Also the preferred alternative.
- 3. ParaClamp: Well perceived by workers. However, required higher postural demands.
- 4. RaptorRail: Least desired in all metrics. Not recommended

Concluding Remarks

Study Summary

Phase I

Phase II

Virtual compatibility testing an efficient, cost-effective, and safe approach.

Validation of the proposed virtual compatibility process using physical tests in actual bridge guardrails **Evaluated candidate FPSDs** in field studies to gather physiological, postural, productivity, and utility data.

Recommended FPSDs that provided the most benefits to maximize safety, efficiency, and productivity.

Photo by World Bank Photo Collection on Foto com / CC BY-NC-ND